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SUMMARY

We present an analytico-computational methodology for the prediction of the effective properties of two types of
three-dimensional particulate Stokes ¯ows: porous media and sedimentation ¯ows. In particular, we determine
the permeability and average settling rate of media that consist of non-colloidal monodisperse solid spherical
particles immersed in a highly viscous Newtonian ¯uid. Our methodology recasts the original problem into three
scale-decoupled subproblems: the macro-, meso- and microscale subproblems. In the macroscale analysis the
appropriate effective property is used to calculate the bulk quantity of interest. The mesoscale problem provides
this effective property through the ®nite element solution of the transport equations in a periodic cell containing
many particles distributed according to a prescribed joint probability density function. Finally, the microscale
analysis allows us to accommodate mesoscale realizations in which two or more inclusions are in very close
proximity; this geometrical stiffness is alleviated by introducing simple domain modi®cations that relax the mesh
generation requirements while simultaneously yielding rigorous bounds for the effective property. Our
methodology can treat random particle distributions as well as regular arrays; in the current paper we analyse
only the latter. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Particulate ¯ows are characterized by the motion of (solid or ¯uid) particles relative to a surrounding

¯uid. The practical importance and complex physics of such ¯ows continue to stimulate numerous

research efforts in diverse ®elds. However, despite recent advances in (serial and parallel)

supercomputing, detailed simulation of three-dimensional particulate ¯ows remains intractable owing

to the wide range of spatial scales. As a result, there is much emphasis on modelling the macroscopic

behaviour of two-phase systems as homogenized media with appropriate effective properties.

In this paper we address two types of particulate ¯ows in which monodisperse non-colloidal solid

spheres are immersed in an incompressible Newtonian ¯uid; creeping ¯ow through porous media1±3
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and creeping (Stokes) batch sedimentation.2±5 In the former problem the spheres are ®xed in space

and we determine the permeability of the material. In the latter problem we require force and torque

balances for each sphere and determine the average settling speed of the suspension. In certain very

special cases the two problems are effectively equivalent.

A crucial aspect of particulate ¯ows is the underlying microstructures, characterized by the size,

geometry and spatial distribution of the particles. Unfortunately, knowledge of detailed

microstructures that characterize actual particulate media is scarce. In response to this uncertainty,

methods have been developed which, based on very little microstructural information, provide upper

and lower bounds for the permeability6±8 and the average settling rate.9±11 The resulting bounds can

be quite crude unless high-order microstructure correlation functions are introduced,8 but this more

detailed information then complicates comparison with experimental data.1,12

At the other pole of effective property approaches are structure-dependent techniques, in which

detailed distributional information on the phases is assumed. These approaches are relevant when the

microstructure is known, can be plausibly inferred, or can be consistently calculated (as in time-

dependent sedimentation approaches); the methods are also of use in `validating' structure-

independent results.13 Purely analytical treatments of problems of the type considered in this study

are primarily restricted to linear problems,3,14 dilute concentrations,15,16 or simple single-particle

(ordered) periodic cell models.17,18 To make further analytical progress, it is necessary to introduce

simplifying, heuristic assumptions: Brinkman media,1,19 Kynch's kinematical theory of sedimenta-

tion20 and averaged continuum models4 are all examples of this approach.

More recently, various computational methods have been applied to the porous media and

sedimentation problems: Stokesian dynamics21,22 and related simulation techniques23,24 employ

approximate mobility-resistance functions for particular classes of Stokes (linear) ¯ows; serial, few-

particle simulations of ®nite Reynolds number particulate ¯ows have been carried out using the ®nite

element method25 and the ®nite volume method;26 boundary integral techniques3,27 and the boundary

element method28 have been used for parallel simulation of multiparticle creeping ¯ow systems; and

lattice gas automata29 have been applied to the porous media problem.

In this paper we extend the variational bound (parallel Monte Carlo) ®nite element methodology of

References 30 and 31 to study the macroscopic behaviour of three-dimensional creeping porous

media and sedimentation ¯ows. The approach is based on a variational hierarchical scale

decomposition procedure which recasts the original multiscale problem into macro-, meso- and

microscale subproblems.30,32,33 In the macroscale problem, not treated here, an effective property

(e.g. permeability) is used to calculate the bulk quantity of interest (e.g. ¯ow rate). In the mesoscale

problem30 the effective property is determined assuming that the particles are distributed in space

according to a postulated joint probability density function (JPDF); for random media, Monte Carlo

methods are used to statistically sample the JPDF. The statistics of the original medium are captured

by analysing a periodic cell of scale suf®ciently large compared with a self-consistently determined

correlation length.30±32 Within this mesoscale cell the appropriate transport equations are formulated

®rst in their strong form and, subsequently in their weak form. The latter is convenient for two

reasons: ®rst, it is the most natural for subsequent ®nite element discretization; second, it allows us to

prove extremum principles that are useful for the microscale treatment.

Within our framework the microscale problem treats the situation in which the distance separating

two or more particles is so small that numerical (®nite element) solution of the corresponding

mesoscale problem can be prohibitively expensive or even impossible. Such geometrical stiffness is

mitigated in the microscale problem31 by developing nip region models for particle clusters (here

`nip' region refers to the small region between close particles). In particular, our variational bound

nip element procedure decomposes the geometrically stiff problem into inner (nip) and outer

problems de®ned on the smallest and larger scales respectively. The nip region model allows the
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inner problem to be solved analytically, thereby avoiding the computational dif®culties associated

with a large range of anisotropic scales. The inner solution is then re¯ected in `coupling' boundary

conditions on a now well-conditioned outer mesoscale problem in which the nip region no longer

appears. Solution of the outer problem yields a rigorous upper or lower bound for the effective

property of interest for a given physical nip region model; the sharpness of the bound is directly

controlled by the number and extent of the excised nip regions.

The methodology described above overcomes many limitations of previous approaches. First, in

the mesoscale problem we can treat many randomly distributed inclusions. Second, various shapes,

sizes and distributions of particles can be considered. Third, the microscale analysis permits us to

determine effective properties at any concentration (particle volume fraction), including maximum

packing. Finally, ¯uid (and also particle) inertia can be incorporated into the mesoscale analysis, as

carried out in References 34 and 35 for ¯ow through ®brous (two dimensional) porous media. We

emphasize that, despite the generality of the methodology, in the current paper we analyse only

regular particle distributions, with the goal of validating our procedures for porous media and

sedimentation inertia-free ¯ows against known solutions.

The paper is organized as follows. In Section 2 the continuous formulations of the porous media

and sedimentation mesoscale problems are presented. In Section 3 we develop and prove the

microscale variational bounds for both problems. In Section 4 the numerical methodsÐmesh

generation, ®nite element discretization and iterative solutionÐdeveloped to solve the two problems

are described. Finally, in Section 5 we present and discuss our results from both a numerical and a

physical perspective.

2. PROBLEM FORMULATIONS

In this section we develop the mathematical formulations of the creeping porous media and

sedimentation mesoscale problems. The formulations are applicable to both regular and random

inclusion distributions.

2.1. Creeping ¯ow through porous media

Figure 1 represents an example of a porous material in which the inclusions Odi are rigid spheres of

equal diameter d held ®xed in space and surrounded by a region Oco which is ®lled with an

incompressible Newtonian ¯uid of density rco and viscosity mco. The external boundaries consist of

an impermeable wall Gw and inlet and outlet sections Gin and Gout where the pressures pin and pout are

prescribed such that DP � pin ÿ pout. The ¯uid is set in motion by a pressure gradient of magnitude

DP=L that extends over the macroscopic length scale L. We assume that the Reynolds number based

on the average ¯uid velocity and the diameter of the spheres is suf®ciently small that the ¯uid motion

is accurately described by the incompressible Stokes equations.

Through our scale-decoupling procedure the two-phase medium is replaced with a homogeneous

material with permeability k. Through Darcy's law the macroscopic velocity (and hence volume ¯ow

rate) is related to the pressure gradient as

huorigiv � ÿ
1

mco

k � hHporigiv; �1�

where uorig is the local ¯uid velocity vector on the original multicomponent domain, k is the

permeability tensor, Hporig is the local pressure gradient and h iv represents volume average. We shall

henceforth deal with isotropic materials only, so that a scalar permeability k suf®ces.
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The permeability is predicted by the mesoscale analysis. As shown in Figure 2, we extract a (by

construction) periodic cubic cell of size l that contains Np spheres and solve the appropriate

mesoscale Stokes equations for the velocity u�y� and the perturbation pressure p�y� � O�EDP�, where

E � l=L� 1. The governing equations read30,33,36

ÿ @

@yj

mco

@ui

@yj

 !
� @p
@yi

� DP

L
d1i in Ome for i � 1; 2; 3; �2�

ÿ @ui

@yi

� 0 in Ome; �3�

where dij is the Kronecker delta symbol, Ome is the ¯uid region of the mesoscale cell and the

summation convention over repeated indices is assumed. The no-slip Dirichlet and periodic boundary

conditions are

u � 0 on @Ome; �4�
and

u�y� � u�y� l�m1e1 � m2e2 � m3e3��; �5�
p�y� � p�y� l�m1e1 � m2e2 � m3e3��; �6�

respectively; ®nally, for uniqueness we require�
Ome

p dy � 0: �7�

Here �e1; e2; e3� are the unit vectors of the co-ordinate system �y1; y2; y3�; y1 is the arbitrarily chosen

direction for the driving pressure gradient, m1;m2 and m3 are integers, @Ome represents all ¯uid±

particle boundaries (the periodic sides of the cube, @O#, are not `real' boundaries) and

dy � dy1dy2dy3.

The permeability k is readily derived from (1), recognizing that hHporigiv � ÿ�DP=L�e1 and

huorigiv � �1=l3� �Ome
u1 dy e1 �hu2iv � hu3iv � 0 owing to isotropy). The result is

k � mco

L

DP

1

l3

�
Ome

u1 dy: �8�

Figure 1. Example of porous medium ¯ow: ¯ow in a duct
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As motivated in Section 1, we now pursue the variational formulation of the mesoscale problem. It

can be shown30 that the strong form (2)±(7) is equivalent to the constrained extremization problem

u � arg max
w2ZOme

JP
Ome
�w�; �9�

where

JP
Ome
�w� � 2

DP

mcoL

�
Ome

w1 dyÿ
�
Ome

@wi

@yj

@wi

@yj

dy; �10�

ZOme
� f�w1;w2;w3� 2 �H1

0#�Ome��3jdiv w � 0g: �11�
Here H1

0#�Ome� is the space of all square-integrable functions that vanish on @Ome, are periodic (of

period l) and whose derivatives are square-integrable over Ome. By multiplying (2) by u, integrating

over Ome and using the divergence theorem along with (3), we arrive at

DP

mcoL

�
Ome

u1 dy �
�
Ome

@ui

@yj

@ui

@yj

dy; �12�

which, by virtue of (8)±(10), states that

k � m2
co

L2

DP2

1

l3
max

w2ZOme

JP
Ome
�w�: �13�

The permeability is thus always non-negative and is proportional to the maximum value of the

functional JP
Ome

.

In order to arrive at the appropriate velocity ®eld u, we transform the constrained maximization

problem (9) into an unconstrained saddle problem by introducing a Lagrange multiplier q�y� to

impose the incompressibility constraint. By taking the ®rst variation of the resulting Lagrangian and

evoking stationarity, we ®nd that �u; p� 2 f�H1
0#�Ome��3, L2

#;0�Ome�g must satisfy

mco

�
Ome

@vi

@yj

@ui

@yj

dyÿ
�
Ome

@vi

@yi

p dy � DP

L

�
Ome

v1 dy 8�v1; v2; v3� 2 �H1
0#�Ome��3; �14�

ÿ
�
Ome

q
@ui

@yi

dy � 0 8q 2 L2
#;0�Ome�; �15�

where L2
#;0�Ome� is the space of all l-triply periodic functions z�y� which are square-integrable over

Ome (note that candidate pressures need not be continuous) and for which
�
Ome

z dy � 0. Equations

Figure 2. Mesoscale periodic (cubic) cell
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(14) and (15) constitute the mesoscale subproblem that is solved to yield the permeability given

by (8).

2.2. Creeping sedimentation ¯ows

Figure 3 is a schematic diagram of particles settling under gravity in a ®nite closed container. As in

Section 2.1, the incompressible Newtonian ¯uid has density rco and viscosity mco. The particles are

non-colloidal monodisperse solid spheres of diameter d and density rdi�> rco� that settle under the

action of gravity, g � ÿge2. We assume that inertia does not play a role in the ¯uid and particle

motions, i.e. the motions are quasi-static. The conditions for quasi-static ¯ow are

Rep � rdiVpd=mco � 1; Ref � rcoVpl2=mcod � 1; �16�
where Rep and Ref are the particle and ¯uid Reynolds numbers respectively, Vp is the Stokes settling

speed of a single particle in an unbounded ¯uid and l is the characteristic interparticle distance. The

two conditions of (16) are equivalent to requiring that both the particle and ¯uid characteristic

equilibrium times be much less than d=Vp; the former can be estimated as d2rdi=mco and the latter as

l2rco=mco. The quasi-static assumption allows us to replace the self-consistent motion of the

suspension with a JPDF that we sample by taking `snapshots' of the system, as originally proposed by

Batchelor.15

As shown in Figure 3, a suspension sedimenting in a container creates three distinct regions of

different particle concentration: the upper clari®ed region consisting of ¯uid with no particles, the

lower compression zone in which the particles accumulate and the middle region or suspension zone.

We focus our attention on the latter region. Note that since the settling process occurs in a closed

tank, we require zero net (¯uid and particle) volume ¯ow rate at any horizontal surface.4,15,20

Our homogeneous, quasi-static, quantity of interest is the average sedimentation speed (or settling

rate) u. Since this quantity de®nes our macroscale subproblem, we pass directly to the mesoscale

formulation. It should be noted that for other suspension ¯ows, e.g. duct ¯ows,37 the macroscale

problem is much more complex.

The mesoscale problem yields the average settling speed u. As in Figure 2, we extract a (by

construction) periodic cell of size l that contains Np spheres. In what follows, we allow for spheres of

different diameters, since the upper-bound microscale treatment involves a bidisperse suspension (see

Section 3.2.2). On the mesoscale the pressure can be written as p � p0 ÿ rcogy2 ÿ ty2 � p0�y�; here

p0 is a reference pressure, g�> 0� is the acceleration due to gravity, t is the (positive) ¯uid `back¯ow'

pressure gradient and p0�y� is the periodic perturbation pressure. The `back¯ow' pressure gradient is

determined from the zero-volume-¯ow-rate condition and can be viewed as the pressure gradient

responsible for the upward movement of ¯uid as the particles settle.

Figure 3. Batch particle Stokes sedimentation
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The mesoscale equations of ¯uid motion are

ÿ @

@yj

mco

@ui

@yj

� @uj

@yi

 !" #
� @p

0

@yi

ÿ td2i � 0 in Ome for i � 1; 2; 3; �17�

ÿ @ui

@yi

� 0 in Ome: �18�

Turning to the boundary conditions, the velocity and (perturbation) pressure ®elds must be l-triply

periodic and the no-slip condition must be consistent with solid body rotation and translation of each

particle. In addition, the quasi-static assumption requires zero net force and torque on each particle.

Mathematically, these conditions read

uj@Ok
� Uk � Rk � �yÿ yk�; k � 1; . . . ;Np; �19��

@Ok

�T0 � n� ds � �tvk ÿwk�e2; k � 1; . . . ;Np; �20��
@Ok

�yÿ yk� � �T0 � n� ds � 0; k � 1; . . . ;Np; �21�

where @Ok is the surface of sphere k, Uk and Rk are respectively the translational and rotational

velocity vectors of particle k, � � � � � denotes the cross-product, yk denotes the centre (and centre of

mass) of particle k, T 0ij � mco�@ui=@yj � @uj=@yi� ÿ p0dij is the `perturbation' stress tensor,

�T0 � n� � T 0ijnj (where nj is the outward normal from Ome on @Ome�; ds is an in®nitesimal surface

element, vk is the volume of particle k and wk �vk�rdi ÿ rco�g is the buoyancy-corrected weight of

particle k. Finally, we must require the zero-net-¯ow-rate condition

ÿ
�
Ome

u2 dy�PNp

k�1

vk�U2�k
 !

� 0; �22�

as well as �
Ome

u1 dy �
�
Ome

u3 dy � 0; �23��
Ome

p0 dy � 0 �24�

for uniqueness.

We make two remarks. First, instead of the usual Laplacian operator for the viscous term in (17),

we use an equivalent `stress formulation' which will allow us to incorporate the stress boundary

conditions (20) and (21) naturally in the variational weak form. Second, we note that t and �Uk;Rk�
are not speci®ed but rather are part of the solution. In essence, equations (20)±(22) are the

complementary conditions from which the particle velocities and the back¯ow pressure gradient can

be deduced. The strong-form equations (17)±(24) are the point of departure for Batchelor's

analysis.15

In the sedimentation problem the effective property of interest is the average settling speed of the

particles, which, by virtue of horizontal �x1 ÿ x3 plane) homogeneity, is de®ned as

u � 1PNp

k�1 wk

IS
Ome
�u�; �25�
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where, for velocity ®elds w satisfying wj@Ok
�Wk � Zk � �yÿ yk�,

IS
Ome
�w� � ÿPNp

k�1

wk�W2�k: �26�

We also introduce the functional JS
Ome
�w�,

JS
Ome
�w� � 2IS

Ome
�w� ÿ mco

1

2

�
Ome

@wi

@yj

� @wj

@yi

 !
@wi

@yj

� @wj

@yi

 !
dy; �27�

the second term of which we shall denote the dissipation integral. By multiplying equation (17) by u,

integrating by parts over Ome and using (18)±(22), we derive33

IS
Ome
�u� � JS

Ome�u� � mco

1

2

�
Ome

@ui

@yj

� @uj

@yi

 !
@ui

@yj

� @uj

@yi

 !
dy: �28�

From (25) and (28) it is clear that the average settling velocity u is always positive.

As in the porous media case (Section 2.1), we recast the problem in variational form to implement

the microscale treatment and the ®nite element method. We can prove that33

u � arg max
w2BOme

JS
Ome
�w�; �29�

where

BOme
� fw 2 Y�Ome�jdiv w � 0;

�
Ome

w2 dy�PNp

k�1

vk�W2�k � 0g; �30�

Y�Ome� �
�
�w1;w2;w3� 2 �H1

#�Ome��3j
�
Ome

w1 dy � 0;

�
Ome

w3 dy � 0;

and 8k 2 f1; . . . ;Npg;wj@Ok
�Wk � Zk � �yÿ yk�;Wk 2 r3;Zk 2 r3

�
; �31�

and r is the set of real numbers. From (25), (28) and (29) we can derive the following expression for

the settling velocity:

u � 1PNp

k�1 wk

max
w2BOme

JS
Ome
�w�: �32�

Related variational expressions for the sedimentation problem can be found in References 9, 10 and

3; related extremum statements for the settling velocity can be found in Reference 10. In order to

arrive at (29) and hence (32), we multiply (17) by the test function v 2 BOme
and integrate over Ome.

We then integrate by parts and use (20), (21) and the attributes of the space BOme
to demonstrate that

the ®rst variation of JS
Ome
�u� vanishes 8v 2 BOme

. As the functional JS
Ome
�w� is negative de®nite, (29)

directly follows.33

As in the previous section, we now convert the constrained maximization problem into an

unconstrained extremization problem by introducing two Lagrange multipliers: q�y� 2 L2
#;0�Ome� to

impose the incompressibility constraint and Z 2 r to impose the zero-volume-¯ow-rate constraint.
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Requiring stationarity, we ®nd that �u; p0; t� 2 �Y�Ome�; L2
#;0�Ome�;r� must satisfy the variational

weak form

mco

�
Ome

@vi

@yj

@ui

@yj

� @uj

@yi

 !
dyÿ

�
Ome

p0
@vi

@yi

dyÿ t
�
Ome

v2 dy�PNp

k�1

vk�V2�k
 !

� IS
Ome
�v� 8v 2 Y�Ome�; �33�

ÿ
�
Ome

q
@ui

@yi

dy � 0 8q 2 L2
#;0�Ome�; �34�

ÿZ
�
Ome

u2 dy�PNp

k�1

vk�U2�k
 !

� 0 8Z 2 r: �35�

It is readily shown that the form (33)±(35) is equivalent to the strong form (17)±(24). Indeed,

multiplying (17) by v 2 Y�Ome� and integrating by parts over Ome, we obtain (33); similarly,

multiplying (18) by q 2 L2
#;0 and integrating over Ome, we obtain (34); lastly, (35) results from

multiplying (22) by Z 2 r. It is important to observe that the zero-net-force and zero-torque

requirements of (20) and (21) appear as natural boundary conditions in the variational formulation of

the sedimentation problem. This constitutes a great advantage for subsequent numerical

implementation.

Note that if we choose v � �0; 1; 0� 2 Y�Ome�, we derive from (33) that

t �
PNp

k�1 wk

vtot

; �36�

where vtot � �
PNp

k�1 vk �
�
Ome

dy� � l3 is the total volume of the mesoscale cell. Although one of

the unknowns of the problem has been determined, it can be seen that we do not have more

independent equations than unknowns. In particular, equations (33) and (34) yield u only to within a

constant; it is through the application of (35) that the velocity is rendered unique. Physically, equation

(36) shows that the back¯ow pressure gradient t depends only on the buoyancy-corrected weight and

concentration of the particles, not on their spatial distribution. This can be understood by carrying out

a y2-momentum balance for a control volume that consists of the entire mesoscale cell. It is clear that

the hydrostatic pressure distribution balances the weight of the ¯uid and is responsible for the

buoyancy forces on the particles; the only other force that can balance the buoyancy-corrected weight

of the particles,
PNp

k�1 wk, is therefore tvtot.

3. MICROSCALE VARIATIONAL BOUNDS

As discussed earlier, our mesoscale analysis may be hindered by the close proximity of two or more

spheres. In order to circumvent the problem, a variational bound methodology is pursued in which we

introduce geometric modi®cations that improve the conditioning of the problem while simultaneously

yielding bounds for the effective property of interest. The proofs are based on the extremizing

properties of the scalar permeability k and the average settling speed u and rely on standard

variational techniques of space restriction and expansion.3,9,10 Although the proofs presented are for a

single nip region in an N-sphere mesoscale cell, the results are readily extended to multiple nips.31

Note that our microscale analysis is not intended to approximate the ¯uid ¯ow in the nip region;

rather, it is designed to provide reasonably sharp bounds on the macroscopic scale (i.e. for the

effective property).
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3.1. Porous media problem

Figure 4 shows the simple geometric modi®cations proposed for the porous media case. To obtain

a lower bound, the two spheres are connected with a solid cylinder whose axis coincides with the line

of centres (Figure 4(a)). The modi®ed ¯uid region cP
LB is now the original ¯uid region Ome minus the

nip region dP
LB�cP

LB � OmendP
LB�. Figure 4(b) depicts the upper-bound geometry, which consists of

two `shaved' spheres. In this case the ¯uid region cP
UB occupies region dP

UB as well as the domain

Ome�cP
UB � Ome [dP

UB�. The porous media proofs follow the arguments in Reference 31 for two-

dimensional porous media (i.e. cylinders in a cross-¯ow), which we brie¯y recall.

3.1.1. Lower bound. Physically, the lower bound is achieved by blocking the ¯ow between

selected particle pairs; mathematically, the proof is based on variational arguments. We de®ne three

motions as shown in Figure 5: motion 1 corresponds to the solution of the original geometrically stiff

porous media problem over the ¯uid region Ome; motion 2 corresponds to the solution over the

modi®ed geometry cP
LB; and motion 3 corresponds to the velocity ®eld of motion 2 extended to the

geometry of motion 1, such that we remove region dP
LB and replace it with ¯uid at rest. To show that

the permeability of motion 2 is a lower bound, we present two intermediate results. First, it is readily

shown that the velocity ®eld of motion 3 is an admissible (though presumably non-maximizing)

candidate to the porous media variational statement (9) de®ned over region Ome. Second, motions 2

Figure 4. Porous media nip region modi®cations: (a) nip region blockage (lower bound); (b) nip region enlargement (upper
bound)

Figure 5. Motions for porous media and sedimentation lower-bound proofs
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and 3 produce the same value for the functional JP
Ome

, since the quiescent ¯uid that replaces region

dP
LB in motion 3 does not contribute to the integrals. Mathematically, the two results read

JP
Ome
�u�1��5 JP

Ome
�u�3��; �37�

JP
cP

LB
�u�2�� � JP

Ome
�u�3��; �38�

where u�n� is the velocity ®eld of motion n � 1; 2; 3. Here (37) follows from the fact that u�3� 2 ZOme

as de®ned in (11). From (37), (38) and the extremum statement of (13) we can write

k � m2
co

L2

DP2

1

l3
JP
Ome
�u�1��5m2

co

L2

DP2

1

l3
JP
Ome
�u�3�� � m2

co

L2

DP2

1

l3
JP
cP

LB
�u�2�� � kLB; �39�

which is the desired result. It can be further shown that by decreasing the radius of the nip region, a

sharper bound is obtained.

3.1.2. Upper bound. The physical argument in favour of the proposed nip enlargement technique

is that the new geometry enhances the ¯ow through the nip. As for the lower-bound proof, we

introduce three motions as shown in Figure 6: motion 1 consists of the solution of the original

mesoscale problem in region Ome; motion 2 is the solution of the porous media problem over the

enlarged geometery cP
UB � Ome [dP

UB; motion 3 consists of the ¯uid region cP
UB with the velocity

®eld of motion 1 extended to include the nip region dP
UB, which is thus ®lled with quiescent ¯uid.

Similarly to Section 3.1.1, we thus have

JP
cP

UB
�u�2��5 JP

cP
UB
�u�3��; �40�

JP
Ome
�u�1�� � JP

cP
UB
�u�3��; �41�

where (40) follows from u�3� 2 ZcP
UB

. From (40), (41) and the extremum statement of (13) we obtain

k � m2
co

L2

DP2

1

l3
JP
Ome
�u�1�� � m2

co

L2

DP2

1

l3
JP
cP

UB
�u�3��4m2

co

L2

DP2

1

l3
JP
cP

UB
�u�2�� � kUB; �42�

which is the desired result. Again by decreasing the size of region dP
UB for a given mesoscale

geometry, the upper bound becomes sharper.

Figure 6. Motions for porous media upper-bound proof
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3.2. Sedimentation problem

As shown in Figure 7, the geometries of the proposed microscale models are simple. Figure 7(a) is

a sketch of the lower-bound geometry, which is obtained by rigidly connecting a pair of spheres by

means of a neutrally buoyant cylinder dS
LB whose axis coincides with the line of centres and whose

spherical end-caps are removed. Figure 7(b) shows the upper-bound geometry, which is obtained by

reducing the diameter of the spheres while holding their centres yk in the same location and

increasing their density to conserve their original buoyancy-corrected weights wk. We shall denote

the number of spheres in the original system as N.

3.2.1. Lower bound. Figure 5 shows the pair of modi®ed spheres for three different mesoscale

motions. Motion 1 is the original motion of the Np � N sedimenting spheres in the ¯uid region Ome.

Motion 2 consists of the motion of Np � N ÿ 1 sedimenting particles, one of which is the `dumb-bell'

obtained by connecting two `selected' particles from the original con®guration; the ¯uid occupies

region cS
LB � OmendS

LB. Lastly, motion 3 is the `dumb-bell' motion 2 extended to the larger ¯uid

domain Ome of motion 1. The proof follows the same logic as the porous media lower-bound proof.

However, owing to the additional particle dynamics, we present a more detailed derivation.33 We ®rst

consider each velocity ®eld u�n�; n � 1; 2; 3; we then relate the corresponding functionals J S�u�n��.
Motion 1 is characterized by the ¯uid velocity u�1� which satis®es equations (17)±(24) over region

Ome, with Np � N;vk � pd3=6;wk �w �vk�rdi ÿ rco�g; k � 1; . . . ;Np. From (29), motion 1 is

such that

u�1� � arg max
w2BOme

JS
Ome
�w�; �43�

with associated settling speed given by (32), which we can rewrite as

u�1� � 1

Nw
JS
Ome
�u�1��; �44�

since all particles are of the same weight.

Figure 7. Sedimentation nip region modi®cations: (a) connecting two spheres to make a dumb-bell (lower bound); (b) shrinking
two spheres (upper bound)
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In motion 2 we treat the two particles that make up the `dumb-bell' as a single particle with

buoyancy-corrected weight 2w. The buoyancy-corrected weight wk and the volume vk of particle k

are thus given by

wk � w if k � 1; . . . ;ND ÿ 1;
2w if k � ND;

�
�45�

vk � �p=6�d3 if k � 1; . . . ;ND ÿ 1;
2�p=6�d3 �vnip if k � ND;

�
�46�

where ND � Np � N ÿ 1 is the number of particles in motion 2, k � ND represents the dumb-bell

(with no loss of generality) and vnip is the volume of the nip region dS
LB. In the proofs that follow, it

is important to note that the centre of gravity of the dumb-bell, yND
, is located at the midpoint of the

segment connecting the centres of the two constituent spheres. As for the original sedimentation

problem (see Section 2.2), we can then prove that

u�2� � arg max
w2B

cS
LB

JS
cS

LB

�w� �47�

and de®ne

u�2� � 1

Nw
JS
cS

LB

�u�2��; �48�

where u�2� is the settling speed for motion 2. Note that as an alternative approach, equation (48) can

be derived from equation (25) by replacing Ome with cS
LB.

Finally, in motion 3 the ¯uid region of motion 2 is enlarged to contain the nip region dS
LB (Np is

again N), with a velocity ®eld that consists of u�2� extended to region dS
LB:

u�3� � u�2� ÿ Ae1 ÿ Ce3 in OmendS
LB;

U
�2�
ND
� R

�2�
ND
� �yÿ yND

� ÿ Ae1 ÿ Ce3 in dS
LB;

(
�49�

where U
�2�
ND

and R
�2�
ND

are the dumb-bell translational and rotational velocities respectively,

A � �vnip=vOme
��U�2�1 �ND

and C � �vnip=vOme
��U�2�3 �ND

are shifts introduced to satisfy the horizontal

homogeneity constraints of (31) over region Ome and vOme
is the volume of region Ome. Note that by

construction the back¯ow pressure gradient t � Nw=l3 is the same for all three motions.

Having described the three motions, we ®rst claim that

JS
Ome
�u�1��5 JS

Ome
�u�3��; �50�

since u�3� 2 BOme
and u�1� is the argument that maximizes JS

Ome
as described in (43). To verify that

u�3� 2 BOme
, we note that: u�3� satis®es (23) by construction; u�3� satis®es the zero-net-volume-¯ow-

rate condition (22)Ðwhat the solid `loses' is regained by the ¯uid; u�3� is continuous and l-triply

periodic (i.e. is in �H1
#�Ome��3�; u�3� is consistent with solid body motion at the particle surfaces, i.e.

satis®es the no-slip boundary condition; and u3 is divergence-free, since the ¯uid in region dS
LB is in

solid body motion.

Next we note that the velocity ®elds of motions 2 and 3 produce the same value of the dissipation

integral, since solid body rotation and translation of the ¯uid in region dS
LB of motion 3 do not

contribute to this integral. Then, since IS
cS

LB

�u�2�� � IS
Ome
�u�3��, we must have

JS
cS

LB

�u�2�� � JS
Ome
�u�3��: �51�

POROUS MEDIA AND SEDIMENTATION FLOWS 157

# 1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 145±175 (1998)



Finally, from (44), (50), (51) and (48) we can assert that

u � u�1� � 1

Nw
JS
Ome
�u�1��5 1

Nw
JS
Ome
�u�3�� � 1

Nw
JS
cS

LB

�u�2�� � u�2� � uLB; �52�

as desired.

3.2.2. Upper bound. The upper-bound proof follows closely that of the lower bound. Figure 8

shows three different motions. Motion 1 is the original motion of the Np � N sedimentating spheres

in ¯uid region Ome. Motion 2 consists of the motion of the same N sedimenting particles, two of

which are shrunk to a smaller diameter d0�<d� but which preserve the same buoyancy-corrected

weights and centres of mass. The ¯uid occupies region cS
UB � Ome [dS

UB, where dS
UB � [N

k�Nÿ1O
0
k

is the region of ¯uid obtained by shrinking the spheres k � N ÿ 1 and k � N (see Figure 7(b));

region O0k is the spherical shell of inner diameter d0 and outer diameter d obtained by shrinking sphere

k. Lastly, motion 3 consists of motion 1 extended to the larger ¯uid domain cS
UB of motion 2. We now

characterize motions 2 and 3 in more detail; motion 1 is identical to motion 1 of Section 3.2.1.

The velocity ®eld u�2� of motion 2 satis®es the strong form (17)±(24) where the volume of particle

k is given by

vk � �p=6�d3 if k � 1; . . . ;N ÿ 2;
�p=6�d03 if k � N ÿ 1;N

�
�53�

and the buoyancy-corrected weight of each particle is w such that, again, t � Nw=l3. As in our

lower-bound proof, we have

u�2� � arg max
w2B

cS
UB

JS
cS

UB

�w� �54�

and thus de®ne

u�2� � 1

Nw
JS
cS

UB

�u�2�� �55�

for the settling velocity.

Figure 8. Motions for sedimentation upper-bound proof
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Finally, motion 3 consists of motion 1 with region dS
UB replaced by ¯uid. This motion is de®ned as

u�3� � u�1� ÿ De1 ÿ Fe3 in cS
UBndS

UB;

U
�1�
k � R

�1�
k � �yÿ yk� ÿ De1 ÿ Fe3 in O0k; k � N ÿ 1;N;

�
�56�

where U
�1�
k and R

�1�
k ; k � N ÿ 1;N, are the translational and rotational velocities of the two unshrunk

spheres of motion 1 and D � �vO0=vcS
UB
�PN

k�Nÿ1�U�1�1 �k and F � �vO0=vcS
UB
�PN

k�Nÿ1�U�1�3 �k are the

shifts necessary to satisfy the horizontal homogeneity constraints of (31). Here vO0 is the volume of

the spherical shell of inner diameter d0 and outer diameter d, and vcS
UB

is the volume of region cS
UB.

From equation (54) and the fact that u�3� 2 BcS
UB

, it follows that

JS
cS

UB

�u�2��5 JS
cS

UB

�u�3��: �57�

We then note that the velocity ®eld of motion 3 produces the same value for the dissipation integral as

the ®eld of motion 1, since solid body rotation and translation of the ¯uid in region dS
UB in motion 3

do not contribute to this integral. If we combine this observation with IS
Ome
�u�1�� � IS

cS
UB

�u�3��, it

follows that

JS
Ome
�u�1�� � JS

cS
UB

�u�3��: �58�

Finally, from (55), (57), (58) and (44) we get

u � u�1� � 1

Nw
JS
Ome
�u�1�� � 1

Nw
JS
cS

UB

�u�3��4 1

Nw
JS
cS

UB

�u�2�� � u�2� � uUB; �59�

which is the desired result. Note that (59) is a bound on the dimensional settling speed.

4. NUMERICAL METHODS

In this section we describe a ®nite element method for solving the `microscale-prepared' porous

media and sedimentation mesoscale problems. For notational simplicity we describe the formulation

for a ¯uid domain Ome; however, identical procedures apply on the bounding domains cP
LB, cP

UB, cS
LB

and cS
UB. As a ®rst step we mesh the mesocale ¯uid domain Ome by subdividing the geometry into

conforming tetrahedra. We then descretize the variational weak forms of interest by using sub- and

isoparametric Taylor±Hood elements38 in which the pressure and velocity ®elds are approximated by

linear and quadratic polynomials respectively.39 Lastly, the resulting linear system of equations is

solved by the Uzawa algorithm40 and a nested conjugate gradient iteration scheme.41

This computational methodology is chosen for several reasons. First, unstructured tetrahedral

meshes can readily adapt to the complex geometries of interest. Second, the ®nite element method is

based on the variational formulation of the problems and thus readily accommodates both the

microscale analyses and the complex (zero net force and torque) sedimentation natural boundary

conditions. Third, iterative solution schemes require much less memory and fewer operations than

direct solvers for the three-dimensional problems of interest.

4.1. Three-dimensional mesh generation

We subdivide the ¯uid region Ome into k conforming tetrahedra Oke such that �Ome;h �
Sk

ke�1
�Oke ,

where Ome;h is the discretized ¯uid domain. Our mesh generation code is an adaptation of the mesh

generation modules of FELISA, a three-dimensional compressible inviscid ¯ow software package.42

The FELISA mesh generator creates an unstructured, linear tetrahedral mesh for the speci®ed

geometry based on the advancing front technique; the user has control over the local mesh spacing h
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through several different parameters and mechanisms. The nodes on the surface of the mesoscale

cube are required to be periodic, consistent with the requisite periodic boundary conditions.

The meshes obtained from FELISA are linear, i.e. the tetrahedra have planar faces. In order to

create a second-order subparametric mesh, we insert an additional node at the midpoint of each edge

of each tetrahedron. To create an isoparameteric mesh from a subparametric mesh, we search for all

the edges of the tetrahedra whose end-nodes are on a spherical particle and then move the

corresponding mid-nodes to the particle surface. It has been found that this simple procedure can in

some cases distort certain tetrahedra to the point that the Jacobian changes sign within those

elements, thus losing coercivity (and preventing the subsequent conjugate gradient iteration from

converging). This problem is avoided in one of two ways: by re®ning the mesh in the vicinity of a

particle (which also helps resolve the ¯ow ®eld around the inclusion) or by ®rst increasing the

diameter of a sphere and then shrinking it to proper size after the mesh has been created, thereby

radially stretching all tetrahedra on the sphere surface. More details on the mesh generation procedure

are given in Reference 33. We remark that although our mesh generation procedure is automatic,

additional geometric capabilities must be implemented to allow for dynamic simulation of

suspensions, in which `snapshots' are replaced by time-consistent evolution.

4.2. Porous media problem

4.2.1. Discretization. The discretization procedure follows three steps: non-dimensionalizing the

variational weak form, restricting the spaces of admissible functions to the ®nite element spaces and

representing the ®nite element spaces with appropriate bases to yield a linear algebraic system of

equations.

We non-dimensionalize the variational weak form of the porous media problem (14), (15) by

choosing d, DPd=L and DPd2=mcoL for the length, pressure and velocity scales respectively, yielding

the equations

a�u; v� ÿ b�p; v� � �f ; v� 8v 2 �H1
0#�Ome��3; �60�

ÿb�q; u� � 0 8q 2 L2
#;0�Ome�; �61�

where u 2 �H1
0#�Ome��3 and p 2 L2

#;0�Ome� are the non-dimensional velocity and pressure solutions

respectively. Here

a�u; v� �
�
Ome

@ui

@yj

@vi

@yj

dy; b�p; v� �
�
Ome

p
@vi

@yi

dy; �f; v� �
�
Ome

d1ivi dy:

We next construct a tetrahedral mesh consisting of k elements, NV
g velocity nodes and NP

g

pressure nodes and introduce the (div-stable) Taylor±Hood ®nite element approximation spaces for

the velocity ®eld uh and the pressure ph : YP
h �Ome� � fvjOke 2 p2�Oke �g \ H1

0#�Ome� and

WP
h �Ome� � fqjOke 2 p1�Oke �g \ C#;0�Ome� respectively. Here C#;0�Ome� is the space of continuous

functions which are l-periodic and have zero average and pn0
are the polynomials of total degree n0

de®ned over the tetrahedron Oke . The discrete solutions uh 2 �YP
h �Ome��3 and ph 2 WP

h �Ome� must then

satisfy

a�uh; v� ÿ b�ph; v� � �f; v� 8v 2 �YP
h �Ome��3; �62�

ÿb�q; uh� � 0 8q 2 WP
h �Ome�: �63�
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We next represent our velocity and pressure approximations by the usual nodal bases and perform

®fth-order Gaussian quadrature33 of the elemental matrices to obtain the linear system

Auhi
ÿ DT

i ph � Mf
i
; i � 1; 2; 3; �64�

ÿDiuhi
� 0; �65�

where A is the discrete (symmetric, positive de®nite) negative-Laplacian operator, uhi
2 rNV

g and

p
h
2 rNP

g are respectively the (ith component of the) velocity and the pressure vectors of unknown

global nodal values, M is the mass matrix, Di is the discrete divergence operator and f
i
� d1i1 is the

non-dimensional imposed pressure gradient. In addition to (64) and (65), we require for uniqueness

that the pressure p
h

have zero algebraic average.

Finally, the continuous permeability of (8) can be discretized in dimensionless form (scaled by d2)

as

kP
h �

1

l3
1TMuh1

; �66�

or equivalently,

kP
h �

1

l3
uT

hi
Auhi

; �67�

with summation over i � 1; 2; 3; here l is non-dimensionalized by d. Equation (67) is obtained by

multiplying (64) by uT
hi

, summing over the repeated index i and recognizing that

uT
hi

DT
i � �Di uhi

�T � 0 from (65). We calculate kP
h in both ways to verify the code.

Given the exact dimensionless permeability k (scaled by d2), we de®ne the discretization error as

EP
h � jkÿ kP

h j, which can be written as

EP
h �

1

l3
ja�u; u� ÿ a�uh; uh�j: �68�

The approximation sign re¯ects the fact that in (68) we ignore geometry approximations and

quadrature errors, the former being particularly important in the subparametric case. We now select

v � u in (60) and v � uh in (62), use (61) and (63), subtract the resulting equations and take the

absolute value to ®nd

ja�u; u� ÿ a�uh; uh�j � j�f; �uÿ uh��j: �69�

Evoking the Cauchy±Schwartz inequality41 to bound the right-hand side of (69) and using (68), we

arrive at

EP
h 4

1

l3
kfkL2kuÿ uhkL2 ; �70�

where kvkL2 � ��Ome
v � v dy�1=2 is the L2-norm over Ome. Equation (70) shows that the permeability

error EP
h is bounded by the ®nite element discretization error in the L2-norm, which is O�h3� for

second-order elements, where h is the mesh spacing.43,44
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4.2.2. Iterative solution. In order to solve for the discrete velocity �uhi
� and pressure �p

h
�

unknowns, we use the Uzawa saddle-decoupling algorithm. Recall that, to obtain the saddle

decomposition, we multiply equation (64) by DiA
ÿ1 and evoke (65) to ®nd

Sp
h
� ÿDiA

ÿ1Mf
i
; �71�

Auhi
� DT

i ph �Mf
i
; i � 1; 2; 3; �72�

where S � DiA
ÿ1DT

i (summation over repeated indices) is a symmetric, positive de®nite matrix. We

®rst solve (71) for the pressure ®eld based on nested conjugate gradient iteration. Once the pressure is

determined, we then solve (72) for the velocity unknowns through three additional conjugate gradient

iterations. Finally, we use either (66) or (67) to determine the permeability. Note that when the local

mesh spacing h varies considerably within the mesoscale mesh, it is convenient and effective to

precondition the outer pressure solver �S� with the diagonal lumped pressure mass matrix.40,41

Although we have presented the discrete system in terms of global matrices, we operate in practice

with local data structures.33

4.3. Sedimentation problem

4.3.1. Discretization. Similarly to the porous media problem, we arrive at the discrete system of

equations by non-dimensionalizing the variational weak form, restricting the velocity and pressure

spaces, representing the velocity and pressure with the usual bases and performing quadrature.

Non-dimensionalizing the variational weak form (33)±(35) for the case of monodisperse spheres by

choosing d, �rdi ÿ rco�gd and �rdi ÿ rco�gd2=mco � 6w=pmcod for the length, pressure and velocity

scales respectively yields

a0�u; v� ÿ b�p0; v� � c�f; v� ÿ �1ÿ c�l�v� 8v 2 Y�Ome�; �73�
ÿb�q; u� � 0 8q 2 L2

#;0�Ome�; �74�
ÿZ��f; u� � l�u�� � 0 8Z 2 r; �75�

where c � Nppd3=6l3 is the sphere volume concentration, u 2 Y�Ome� and p0 2 L2
#;0�Ome� are the

(non-dimensional) velocity and pressure solutions respectively and Y is the functional space de®ned

in (31). Here

a0�u; v� �
�
Ome

@vi

@yj

�
@ui

@yj

� @uj

@yi

�
dy; �f; v� �

�
Ome

d2ivi dy; l�v� � p
6

PNp

k�1

�V2�k;

where �V2�k is such that vj@Ok
� Vk � Pk � �yÿ yk�, k � 1; . . . ;Np.

As for the porous media problem, we introduce a tetrahedral mesh consisting of k elements and our

two discrete spaces YS
h �Ome� � f�v1; v2; v3�jOke 2 �p2�Oke ��3g \ Y�Ome� and WS

h �Ome� �
fqjOke 2 p1�Oke �g \ C#;0�Ome�: The discrete solutions uh 2 YS

h �Ome� and p0h 2 WS
h �Ome� must then

satisfy

a0�uh; v� ÿ b�p0h; v� � c�f ; v� ÿ �1ÿ c�l�v� 8v 2 YS
h �Ome�; �76�

ÿb�q; uh� � 0 8q 2 WS
h �Ome�; �77�

ÿZ��f; uh� � l�uh�� � 0 8Z 2 r: �78�
Note that condition (78), originating in (22), sets the level of uh2

.

Turning now to the representation of our unknowns, we note that the velocity ®eld, as well as all

variations v 2 YS
h �Ome�, must be consistent with solid body motion of the particles. In order to make
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the standard nodal (®nite element) representation of the bases conform with this essential kinematic

requirement, we construct a mapping matrix Q:33,45

uh � Qumaster
h ; �79�

in which uh 2 r3NV
g and umaster

h 2 r3Ndof . Here 3NV
g is the total number of velocity degrees of freedom

in the absence of any boundary conditions and 3Ndof is the number of actual velocity degrees of

freedom, where Ndof � NV
g ÿ Nsurf � 2Np and Nsurf is the number of velocity nodes on all particles.

Note that in the sedimentation formulation we concatenate all three velocity components into one

vector, uT
h � �uT

h1
uT

h2
uT

h3
�, since the bilinear form a0��; �� couples the three directions. In effect, the

matrix �Q� maps the master degrees of freedom of the system �3Ndof � onto the ®nite element slave

degrees of freedom �3NV
g � created by the mesh generator.

We now show an example of how Q maps the six degrees of freedom of particle k onto the Ns

surface nodal values of the particle in the (say) i � 1 direction. For this subset of nodes, equation (79)

reads

u1
h1

..

.

un
h1

..

.

u
Ns

h1

0BBBBBBB@

1CCCCCCCA �
1 0 0 0 ��y1

3�k ÿ �y3�k� ÿ��y1
2�k ÿ �y2�k�

..

.

1 0 0 0 ��yn
3�k ÿ �y3�k� ÿ��yn

2�k ÿ �y2�k�
..
.

1 0 0 0 ��yNs

3 �k ÿ �y3�k� ÿ��yNs

2 �k ÿ �y2�k�

0BBBBBB@

1CCCCCCA
�U1�k
�U2�k
�U3�k
�R1�k
�R2�k
�R3�k

0BBBBBB@

1CCCCCCA; �80�

where �yn
i �k and �yi�k; i � 1; 2; 3, are the co-ordinates of the nth surface node and the centre of mass of

particle k respectively and un
h1

is the value of the velocity vector at node n in the i � 1 direction. Of

course, Q operates as an identity on those entries of umaster
h that correspond to degrees of freedom that

are not on a particle.

The great convenience of the `Q' mapping is that we can now write our discrete equations in terms

of standard bases on a standard mesh and standard elemental matrices. Our linear system becomes

QTA0Qumaster
h ÿ QTD0Tp0

h
� QTcM010 ÿ �1ÿ c�Lmaster; �81�

ÿD0Qumaster
h � 0; �82�

10TM0Qumaster
h � p

6

PNp

k�1

�U2�k � 0; �83�

where A0 is the `stress formulation' of the discrete Laplacian that couples all three velocity directions,

D0 � �D1 D2 D3� with the Di as de®ned in Section 4.2.1, M0 is the block-diagonal matrix formed by

the component mass matrices M, and 10 is the 3NV
g -vector which is unity only for the degrees of

freedom associated with the second vector component of the velocity. Finally, the vector

�Lmaster�T � �LT
1 LT

2 LT
3 � is, on a global level, given by

�Li�j � d2ip=6 if j is a translational degree of freedom of sphere k;
0 otherwise;

�
�84�

where i � 1; 2; 3, and j � 1; . . . ;Ndof . Note that the right-hand side of (81) is obtained in three steps:

®rst, we calculate cM010 on the slave degrees of freedom; second, we map the slave degrees of

freedom onto the master degrees of freedom via QT (i.e. perform QTcM010�; ®nally, we subtract

�1ÿ c�Lmaster to obtain the right-hand-side forcing term.
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4.3.2. Iterative solution. The solution of (81)±(83) is obtained using the Uzawa algorithm

described in the previous section. For the sedimentation problem the saddle decomposition takes the

form

Sp0
h
� ÿD0Q�QTA0Q�ÿ1�QTcM010 ÿ �1ÿ c�Lmaster�; �85�

�QTA0Q�umaster
h � QT�D0Tp0

h
� cM010� ÿ �1ÿ c�Lmaster; �86�

where S � D0Q�QTA0Q�ÿ1QTD0T. Note that both QTA0Q and S are positive de®nite (or positive

semide®nite) matrices. The pressure preconditioner described in Section 4.2.2 is again used to

accelerate the outer iteration associated with (85).

Equation (83) is implemented similarly to the uniqueness conditions on the velocity components,

(23), and on the pressure, (24). For example, (83) is satis®ed by ®rst calculating the (non-zero) value

of the left-hand side with the velocity results of a given iteration and then subtracting this result,

divided by the volume of the mesoscale cube, from the velocity vector in the i � 2 direction. In

in®nite precision arithmetic, (83) need only be satis®ed after the solver that inverts QTA0Q has

converged; however, to ensure that the conjugate gradient iteration converges in ®nite precision

arithmetic, we satisfy condition (83) every, say, 100 iterations. Note also that when integrating over

the ¯uid region Ome, the discrete volume vme;h of the sub- or isoparametric domain Ome;h will differ

slightly from the exact value vme. In the continuous formulation the solvability of the variational

weak form (33)±(35) is guaranteed by the correct choice of the back¯ow pressure gradient

t � Npw=l3 (see Section 2.2). In the discrete formulation, solvability is guaranteed by a discrete

back¯ow pressure gradient

th �
NpwPNp

k�1 vk �vme;h

;

non-dimensionally, th is equivalent to the discrete volume fraction

ch �
PNp

k�1 vkPNp

k�1 vk �vme;h

:

It follows that we must replace the volume fraction c with ch in (85) and (86).

5. RESULTS AND CONCLUSIONS

In this section we present and discuss our results and offer some conclusions. In Section 5.1 we

present the porous media results for a simple cubic array of spheres and validate the results against

semi-analytical solutions. Subsequently, we implement the microscale treatment of Section 3.1 to

reach maximum packing density and brie¯y discuss low-Reynolds-number ¯uidization. In Section

5.2 the sedimentation methodology is validated by relating the porous media results to the settling

velocity of a simple cubic array of spheres. We then look at two spheres settling in a mesoscale cell,

both with and without our microscale treatment, and compare these results with those obtained for a

pair of spheres settling in an in®nite ¯uid. Finally, the qualitative behaviour of three spheres in the

mesoscale cell is brie¯y discussed.

Note that all numerical results presented in this section are dimensionless: the permeability is non-

dimensionalized with respect to the square of the sphere diameter d, the settling speed is non-

dimensionalized by �rdi ÿ rco�gd2=mco � 6w=pmcod and, as before, all linear dimensions that appear
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in the variational weak forms are non-dimensionalized with respect to d. However, for discussion

purposes, mesoscale lengths are in reference to a unit edge �l � 1�. Dimensional variables, when

needed, will be marked by a `hat' (e.g. û; k̂�.

5.1. Porous media results

5.1.1. Numerical results. Exact results for creeping ¯ow through a simple cubic array of spheres

are presented in Reference 17 in the form of a concentration-dependent drag coef®cient K de®ned as

K � D̂=D̂Stokes; �87�
where D̂Stokes is the Stokes drag on a single sphere moving at a constant speed Û1 in an unbounded

¯uid and D̂ is the drag on a sphere in the simple cubic array moving at the same speed Û1 in a

quiescent ¯uid. The drag coef®cient can be related to the permeability quite simply. First, a

momentum balance on the mesoscale cell tells us that the pressure force induced by the macroscopic

pressure gradient �DP̂=L̂� balances the drag force D̂; second, through Darcy's law,

Û1 � ÿ�k̂=mco�DP̂=L̂, we can then relate the drag to the dimensionless permeability as

k � 1=18cK: �88�
Table I compares our permeability results with those of Reference 17 for different sphere

concentrations; the agreement is very good.

To ensure that our code behaves correctly, we observe how the error decreases as the mesh is

re®ned for a given sphere concentration c � pd3=6l3. In particular, we plot in Figure 9, in log±log

format, the error EP
h versus the nominal mesh spacing h for a concentration c � 0�125, where

EP
h � jkÿ kP

h j. Here k is the exact permeability and kP
h is the ®nite element discrete permeability. The

data of Figure 9 are obtained by using subparametric and isoparametric p2±p1 (Taylor±Hood)

tetrahedral elements with a nominal mesh spacing h that varies from 0�17 to 0�07 in a cube of unit

side (corresponding to about 3,000±25,000 degrees of freedom for each velocity component). The

calculations are performed on a high end HP 9000 workstation and require from several minutes to

several hours of CPU time. From the simple theory of Section 4.2.1 we expect, based on (70), O�h3�
convergence. Figure 9 con®rms that the convergence rate is indeed third-order for isoparametric

elements; for subparametric elements we obtain only O�h2� convergence owing to the skin error

associated with the surface mesh of the sphere. On an absolute scale the isoparametric error is much

smaller than the subparametric error, the former clearly being the more ef®cient approach.

In order to achieve maximum packing density �c � 0�5236�, we must implement the microscale

treatment described in Section 3.1, since a mesh cannot be generated when the sphere touches the

Table I. Permeability versus concentration
results for simple cubic array of spheres

Concentration kRef : 17 kP
h

0�008 4.554 4�507
0�064 0�3089 0�3080
0�125 0�1036 0�1031
0�216 0�03456 0�03455
0�343 0�01052 0�01047
0�45 0�004394 0�004374
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sides of the mesoscale cell, i.e. comes into contact with spheres from neighbouring cells. Following

the procedures of Section 3.1, we obtain the results shown in Table II, in which we see that the

microscale treatment allows us to bound the permeability rather sharply. As expected, as the nip

region increases in size (i.e. as the nip cylinder diameter increases), the bounds become cruder and

the computational problem, having fewer degrees of freedom, becomes easier. Figure 10 depicts part

of a mesh for the lower-bound geometry. The use of the bounding procedures is crucial in analysing

random porous media, especially at medium to high concentrations when particles in close proximity

are the norm and not the exception.

5.1.2. Physical results. As described in the previous subsection, we successfully reproduce the

well-known results for permeability in simple cubic arrays. Although this geometry is seldom a good

model for the spatial distribution of particles in real porous media, it can still lead to reasonable

quantitative estimates. For instance, we can relate the permeability of a packed bed to the concept of

Figure 9. Convergence plot for permeability formulation: error EP
h versus nominal mesh spacing h for simple cubic array at

concentration c � 0�125

Table II. Permeability bounds for maximum packing density
c � 0�5236 for simple cubic array. The nip diameter is the
diameter of the cylindrical region that is added to or
subtracted from the ¯uid domain, relative to the side of the

mesoscale cube, l

Nip Diameter kP
h;LB kRef : 17 kP

h;UB

0�2 0�002459 0�002520 0�002588
0�25 0�002250 0�002520 0�002862
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minimum ¯uidization velocity,46 Umf � �1=l3� � Ome
�u1�mf dy, which is the average ¯uid velocity that

creates a pressure drop across a packed bed of particles such that the pressure drop balances the

buoyancy-corrected weight of the particles; it is typically expected that a velocity greater than Umf

leads to ¯uidization. Using Darcy's law, we can write the pressure drop in terms of the minimum

¯uidization velocity, the ¯uid viscosity and the permeability, obtaining

Remf � kc�GaMv�; �89�
where Remf � rcoUmf d=mco is the ¯uidization Reynolds number, Ga � d3gr2

co=m
2
co is Galileo's

number and Mv � �rdi ÿ rco�=rco. Based on our results for simple cubic arrays of spheres, (89)

becomes

Remf � 1�32� 10ÿ3�GaMv�; �90�
where kc � 1�32� 10ÿ3 is obtained by setting c � 0�5236 and k � kP

h � 0�002524; the latter is the

arithmetic mean of the sharpest bounds of Table II.

Empirical correlations that relate Remf ;Ga and Mv are abundant in the literature.46 Unfortunately,

most of the formulae are not linear in GaMv, since they account for ¯ow regimes that range from low

to intermediate Reynolds numbers. However, among those formulae that are linear, we ®nd that the

empirical coef®cient kc varies from 861074 to 861073 for different types of randomly packed

beds, which demonstrates that our regular array estimate is of the correct order of magnitude. The

empirical coef®cient is most probably a strong function of the spatial distribution of the particles.

5.2. Sedimentation results

5.2.1. Numerical results. We begin by analysing the sedimentation of a simple cubic array of

spheres and compare these results with those for porous media, since for this geometry the two

problems yield easily interchangeable effective properties. Both ¯ows are caused by a pressure

Figure 10. Mesh cross-section for permeability lower-bound geometry for maximum packing density �c � 0�5236� for simple
cubic array
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gradient: in porous media ¯ow the pressure gradient is externally imposed, whereas in sedimentation

the pressure gradient is created by the buoyancy-corrected weight of the particles (i.e. the back¯ow

pressure gradient). Relating the settling speed of a simple cubic array to the corresponding

permeability is thus fairly simple. First, we adopt a co-ordinate system that is ®xed on a sedimenting

sphere and recognize that

û1;permea � û2;sed ÿ Û2; �91�
where û1;permea and û2;sed are the dimensional velocity ®elds in the direction of the pressure gradients

for the permeability and sedimentation ¯ows respectively and Û2 is the dimensional co-ordinate

system shift (i.e. the vertical velocity of a settling sphere). Second, we use Darcy's law,

hû1; permeaiv � ÿ�k̂=mco�DP=L, where hû1;permeaiv � ÿÛ2 from (91) and the zero-net-volume-¯ow-rate

condition (22), and ÿDP=L � t �w=l3. Non-dimensionalizing all quantities as in Section 4.3.1, it

follows that

k � ÿU2=c � u=c �92�
for simple cubic arrays, where all quantities in (92) are dimensionless.

Figure 11 is a plot of ES
h � jkÿ kS

h j versus h for a concentration c � 0�125 for isoparametric

p2 ÿp1 elements, where kS
h � uh=c, i.e. the sedimentation calculation prediction for the

permeability. The mesh spacing ranges from h � 0�15 to 0�091 in a mesoscale cell of unit side;

the corresponding CPU times range from 1 to 12 h. The data points seem to suggest third-order

convergence, as expected. Table III presents the sedimentation results with greater precision. When

compared with the porous media results of Table I, it is clear that the porous media and sedimentation

predictions for the permeability are close but do not coincide. This is because, although the

formulations are equivalent in the continuous sense, they are not equivalent in the discrete sense. In

particular, in the porous media formulation we force the velocity to be zero on the sphere boundary,

whereas in the sedimentation formulation we require force and torque balances on the sphere. Figure

12 is a summary of our permeability results for both formulations; note that we have included the

porous media maximum packing density result as a vertical `error bar' that represents the crudest of

the bounds of Table II.

Next, we consider a pair of particles in the mesoscale cell. In particular, we analyse a mesoscale

cell with edges of unit length containing two spheres of diameter d � 0�1 separated by an intercentre

distance lc � 0�2. We consider three cases corresponding to three orientations of the line connecting

the centres of the spheres; in all three cases the centres of the spheres lie on the y3 � 0�5 plane. Figure

13(a) shows the surface mesh for case 1, which corresponds to the line of centres being perpendicular

to the gravity vector. In case 2 the line of centres is parallel to gravity, as shown in Figure 13(b).

Finally, Figure 13(c) shows case 3, in which the line of centres makes an angle of p=4 with the

horizontal. Table IV summarizes for each of three cases the translational and rotational degrees of

freedom of each particle obtained on meshes with about 7,000 elements and 10,000 degrees of

freedom for each velocity component. Note that we have tried various sphere arrangements such that

the pair is at a non-zero angle with the y3 � 0�5 plane and found that our results remain largely

invariant.

Although the three cases discussed do not require the microscale treatment of Section 3.2, they are

a convenient vehicle by which to illustrate the bounds. For each of the original cases we introduce the

lower- and upper-bound analyses of Section 3.2. The lower bound is obtained by connecting the pair

of spheres with a cylinder of diameter dc � 0�08 and merging the two spheres into a single particle, a

dumb-bell; the upper bound is obtained by shrinking both spheres to a diameter d0 � 0�08. Table V

summarizes the dumb-bell motions and Table VI summarizes the motions of the two spheres of

diameter d0.
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Finally, we show the bounds for the settling speeds in Table VII. As mentioned above, the three

cases analysed are not geometrically stiff and thus implementing the bounding procedures does not

decrease the number of degrees of freedom signi®cantly; the bounds are nevertheless quite sharp, as

the ¯uid prefers to ¯ow around the intersphere gap. Note that (59) is a dimensional result, û4 ûUB.

In Tables IV and VI the velocities are scaled by 6w=pmcod and 6w=pmcod0 respectively and thus (59)

implies that

u4
d

d0
uUB � �uUB: �93�

It is thus �uUB and not uUB that we present in Table VII and it is seen that (93) is indeed satis®ed.

Figure 11. Convergence plot for sedimentation formulation: error ES
h versus nominal mesh spacing h for simple cubic array at

concentration c � 0�125

Table III. Sedimentation results:
sedimentation calculation prediction
for permeability versus concentra-
tion for simple cubic array of spheres

Concentration kS
h

0�008 4�468
0�064 0�3068
0�125 0�1028
0�216 0�03432
0�343 0�01046
0�45 0�004368
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5.2.2. Physical results. We brie¯y discuss several physical aspects of the ¯ows presented in the

previous subsection, beginning with the simple cubic array. One interesting aspect of this well-known

¯ow is that the settling velocity of the array is always smaller than the settling velocity of a single

sphere in an unbounded medium, uStokes � 1=18 � 0�05556 (in non-dimensional form). We observe

that for the smallest concentration we reach, c � 0�000268, the settling speed is uh � 0�04867,

which is less than but close to uStokes. The lowest settling speed is achieved at the maximum

concentration c� 0.5236; in this close-packed limit the settling speed is uh � kP
hc � 1�32� 10ÿ3,

which is much less than uStokes. This phenomenon, known as hindered settling, is common to all

sedimentation processes that occur in any kind of impermeable `back¯ow' container: the upward ¯ow

of ¯uid retards the motion of the suspension, so Np particles in a mesoscale cell fall slower than the

same Np particles in an unbounded medium. Note that sedimentation in unbounded ¯uids has a

peculiar behaviour: since each additional particle drags along with it some ¯uid and therefore other

particles, an in®nite number of particles falls at an in®nite speed.47

The hindered settling argument also applies to the pair of spheres discussed in the previous

subsection. Happel and Brenner47 obtain analytical results for two spheres falling in an unbounded

¯uid based on the method of re¯ections. For example, when the sphere centres are separated by a

distance that is three times their radius, the analytical study predicts the settling speed

uHB;hor � 0�07059 when the line of centres is horizontal and uHB;ver � 0�07959 when the line of

centres is in the direction of gravity. For spheres of diameter d � 0�2 and interparticle distance

lc � 0�3 in a mesoscale cube of unit edge we calculate uh;hor � 0�03956 < uHB;hor and

uh;ver � 0�05063 < uHB;ver, consistent with the hindered settling theory. Again, in the limit of zero

concentrations �c! 0� the settling rates should coincide.

Figure 12. Permeability k versus concentration c for simple cubic array of spheres
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Figure 13. Sedimentation of two spheres in a mesoscale cell: surface meshes of spheres and one face of mesoscale cell

Table IV. Translational and rotational degrees of freedom of two spheres �k � 1; 2� falling in a mesoscale cube
for the three cases described in the text and depicted in Figure 13

Case k �U1�k �U2�k �U3�k �R1�k �R2�k �R3�k
1 1 Ð ÿ0�050322 Ð Ð Ð ÿ0�007421
1 2 Ð ÿ0�050324 Ð Ð Ð 0�007412
2 1 Ð ÿ0�059150 Ð Ð Ð Ð
2 2 Ð ÿ0�059184 Ð Ð Ð Ð
3 1 ÿ0�003920 ÿ0�054733 Ð Ð Ð ÿ0�005346
3 2 ÿ0�003917 ÿ0�054708 Ð Ð Ð 0�005288
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There are also some interesting qualitative features associated with the fall of two spheres in a

periodic cell. For example, the interparticle distance lc remains constant throughout the fall. This can

be explained through the concept of kinematic reversability of Stokes ¯ows:48,49 by reversing the

¯ow and the boundary motions as well as the pressure gradient and body forces, we are presented

with a new ¯ow that still satis®es the equations of motion. For the case of two spheres with their line

of centres parallel to gravity it is not intuitive that the distance lc should remain constant; however,

this must be the case. To show this, assume that, for example, the spheres diverged from each other;

but, by reversing the ¯owÐequivalent to changing the sign of the gravity vectorÐthe spheres would

reverse their motions. This is clearly incorrect, since rotating the gravity vector by p should yield the

same ¯owÐdiverging spheres cannot become converging. Thus the spheres must fall at constant

separation. The same argument can be made for a pair of spheres oriented in any way. These results

are consistent with the analytical results of Happel and Brenner discussed earlier. Note that some

experiments50 show two-sphere ¯ows in which the centre-to-centre distance is not constant; however,

this is probably an indication of the presence of inertia, which can lead, for example, to the `kissing

and tumbling' phenomenon observed in dynamical simulations at non-zero Reynolds numbers.25

The relative sharpness of the bounds of Table VII can also be understood on physical grounds. For

instance, the lower bound is sharper than the upper bound because in the original ¯ow the spheres are

close enough that blocking the nip regionÐcreating a dumb-bellÐdoes not affect the mesoscale ¯ow

Table V. Translational and rotational degrees of freedom of a dumb-bell in a mesoscale cube
(lower-bound geometry) for the three cases described in the text and depicted in Figure 13

Case �U1� �U2� �U3� �R1� �R2� �R3�
1 Ð ÿ0�047004 Ð Ð Ð Ð
2 Ð ÿ0�058298 Ð Ð Ð Ð
3 ÿ0�005217 ÿ0�052605 Ð Ð Ð Ð

Table VI. Translational and rotational degrees of freedom of two shrunk spheres in a mesoscale cube (upper-
bound geometry) for the three cases described in the text and depicted in Figure 13

Case k �U1�k �U2�k �U3�k �R1�k �R2�k �R3�k
1 1 Ð ÿ0�050980 Ð Ð Ð ÿ0�004649
1 2 Ð ÿ0�050981 Ð Ð Ð 0�004752
2 1 Ð ÿ0�058560 Ð Ð Ð Ð
2 2 Ð ÿ0�05865 Ð Ð Ð Ð
3 1 ÿ0�003441 ÿ0�054772 Ð Ð Ð ÿ0�003367
3 2 ÿ0�003456 ÿ0�054749 Ð Ð Ð 0�003316

Table VII. Bound results on settling speed of two
spheres in a mesoscale cube for the three cases
described in the text and depicted in Figure 13

Case uh;LB uh
�uh;UB

1 0�04700 0�05032 0�06372
2 0�05830 0�05916 0�07328
3 0�05261 0�05472 0�06845
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substantially. This argument also explains why the lower bound is sharpest for the case in which the

line of centres is aligned with gravity; intuitively, the nip region should be one of relatively low

viscous dissipation in this con®guration. Of course, the lower bound will also become sharper as the

particles get closer together. Note, however, that when analysing a mesoscale-cell with many

particles at high concentrations, the nip region between two close neighbours can still be a region of

relatively high viscous dissipation if, owing to the particle distribution, ¯uid is `forced' to ¯ow

through the nip region; clearly in this case the lower bound will not be as sharp.

Lastly, we close with an experiment with three spheres in a mesoscale cube to demonstrate that our

numerical simulation can produce the relative motion of the particles. Figure 14 shows the surface

mesh of the geometry we analyse, which consists of three spheres of diameter d � 0�1 on the

y3 � 0�5 plane; spheres 1 and 3 lie on a y2� const. plane 0�4 units apart, while sphere 2 is positioned

halfway between the ®rst two but at y2� const.7 0�10. As seen in Table VIII, spheres 1 and 3 fall

down and towards each other while counter-rotating, while sphere 2 falls straight down at a higher

settling speed than the other two spheres. It is important that our sedimentation formulation allows for

relative motion of the particles, since this is an essential feature of real sedimenting suspensions.

Figure 14. Sedimentation of three spheres in a mesoscale cell: surface meshes of spheres and one face of mesoscale cell
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Future work should investigate random inclusion distributions by incorporating statistical analysis

and parallel processing as described by Cruz et al.;32 consider the moderate-Reynolds-number inertial

¯ows often found in ¯uidized beds, as described in Reference 35; explicitly track the sedimentation

particle trajectories in time as in Reference 25, thereby determining a self-consistent JPDF and

associated settling speed; and study polydisperse and non-spherical inclusions.
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